PESC 2005

Winter Workgroup Summit

Significant progress continues within all workgroups, boards, and committees of PESC's Standards Forum for Education. With the success of the Winter 2005 Summit, held February 17-18 2005 in San Diego, we have attached summaries and organizational information regarding workgroups and committees beginning on page 10.

IT Spending Drops on Campus

Postsecondary institutions will spend 4 percent less on IT in the current academic year, compared with 2003-04, making this the second year of declined spending, according to a Chronicle of Higher Education article on the annual survey conducted by Market Data Retrieval.

The survey of 1,427 two- and four-year colleges revealed that colleges will spend a total of $2.4 billion on hardware, $1.3 billion on software, $1.2 billion on outside services, and $242 million on technology spending, for a total of $5.15 billion, down from $5.36 billion last year.

A closer look at the numbers showed that despite overall decline, private institutions’ spending is expected to increase 28 percent. The report also concluded that private institutions will spend an average of $553 per student compared to $203 per student by their public counterparts.

In a broader look at technology on campus, the report indicated that institutions offering distance education programs fell 3 percent from 67 percent to 64 percent. However, wireless technology on campus rose to 79 percent from 70 percent last year.

Copies of the report, “The College Technology Review, 2004-2005 Academic Year,” cost $49 each and can be ordered by sending an e-mail message to Market Data Retrieval at mdrinfo@dnb.com, or by calling (800) 333-8802.
The Electronic Authentication Partnership (EAP) has elected its first Board of Directors to oversee the next phase of its work, which includes pilot programs to test its landmark Trust Framework, according to the February 7 press release.

The EAP, with over 50 corporate and government agency participants, promotes interoperability among public and private online authentication systems. The Trust Framework provides rules and procedures so that an electronic credential issued by an EAP-certified participant could be relied on by any other EAP participant.

“The obstacle to widespread online authentication isn’t technology, it’s a lack of accepted rules for trust,” said James Lewis, the Interim Chair of the EAP and Director of the Technology and Public Policy Program at the Center for Strategic and International Studies (CSIS). “The EAP’s Trust Framework is a major achievement by a public-private partnership that gives companies and individuals a way to determine how much they can trust a credential issued by someone else.”

“In conducting the pilots,” Lewis said, “the EAP will be able to count on the oversight of a talented Board that draws from a broad cross-section of the authentication industry.”

The new Board of Directors, which was elected in January 2005, is composed of 16 members:

Voting Board Members
- Mr. Khaja Ahmed, Microsoft Corporation
- Ms. Catherine A. Allen, BITS
- Mr. James DeVaul, KPMG
- Mr. Glen B. Gainer III, Auditor, State of West Virginia, representing the National Association of State Auditors, Comptrollers and Treasurers (NASACT)
- Ms. Jane Hennessy, Wells Fargo
- Mr. John Jackson, General Motors Corporation
- Ms. Linda Lewis-Pickett, American Association of Motor Vehicles Administration
- Ms. Judy Lin, VeriSign, Inc.
- Mr. Elliott C. McEntee, NACHA – The Electronic Payments Association
- Mr. Gabe Minton, Mortgage Bankers Association
- Mr. Jack Radzikowski, Northrop Grumman
- Mr. Howard Schmidt, U.S. Computer Emergency Readiness Team
- Mr. Michael D. Sessa, Postsecondary Electronic Standards Council
- Mr. Bill Smith, Sun Microsystems, representing the Liberty Alliance Project
- Mr. James Wagner, Health Information and Management Systems Society (HIMSS)

Federal Advisor
- Mr. David Temoshok, General Services Administration

The EAP’s Trust Framework includes common business rules for organizations that issue and accept online credentials, as well as for third-party processors and those involved in accrediting credential issuers. The Trust Framework addresses the vetting of identities before digital credentials are issued, ensures that there is a common understanding about the credentials’ levels of assurance, and establishes uniform criteria and processes for evaluating credential issuers.

Additional information on the EAP, and the Trust Framework are available on the EAP’s web site at www.eapartnership.org.

PESC Welcomes New Members

XAP Corporation
- PESC contact, Adriana Farella, Director of Product Strategy
 - www.XAP.com

Georgia Board of Regents
- PESC contact, Tonya Lam, Associate Vice Chancellor of Student Affairs
 - www.USG.com

Bank of America
- PESC contact, Scott Dowd, Vice President
 - www.BankofAmerica.com
Tell us a little about California School Information Services (CSIS), including what the program does and what it provides to the community.

Most simply stated, CSIS provides an exchange utility to support information transfer electronically. The two most visible aspects of CSIS are the computer system we built to enable that exchange, and our work with every one of California’s one thousand school districts to establish and promote ubiquitous use of the CSIS Statewide Student Identifier. Less obviously we are an entire program of efforts structured to help our public education community to address problems of information exchange. For example, CSIS works with local education agencies and the California Department of Education to build consensus on standard data formats for information exchange; we encourage the local agencies to develop student information systems containing common core functionality and data elements; and provide support to our clients use of the State Reporting and Records Transfer System, ‘SRRTS’ for short. SRRTS, which was developed, implemented and is maintained by CSIS, is the systems component of the “information exchange utility”.

Designing and building SRRTS was an intriguing technical project. It called for evaluation and selection of strategies and tools to connect to and process data from widely disparate and highly proprietary systems. The strategy was a pragmatic one, as rather than replacing existing systems, CSIS provides incentive funding to leverage and enhance hardware and software infrastructure already in place at districts and...
schools.

Not paying for the same work twice is another leveraging concept, so CSIS helps participants to define consortia of one or more school districts, county superintendents of schools and other education entities that use common software systems. These consortia then cooperate to put in place major components of the required functionality while sharing the costs among themselves. Having this local autonomy provides the flexibility to adopt a number of different approaches, rather than CSIS attempting to build a one-size-fits-all system. The consortia use a number of different software application products developed by suppliers or by the consortia members themselves. But each consortium accepts the common standard for data structures, so rather than having custom systems for more than a thousand different education entities, California has a much smaller number of different approaches, basically one for each consortium. A significant number of smaller districts don’t fit in the consortia approach, since they do not find it feasible or beneficial to maintain fully featured student information systems. CSIS provides a web portal within SRRTS to support those districts.

We need strategies, tactics and tools for the people side as well as the technology side. What we found at the outset of promoting the consortia, and what continues to be evident, is that the greatest challenges are not in the technology, they are the challenges of getting started and staying the course. That is, addressing issues of readiness and sustainability. The most problematic tasks are being organizationally and systemically capable of collecting, managing and using data to transform it to actionable information.

So activities like establishing an advisory group of state and local stakeholders; defining and clearly communicating parameters of local and state project success became indispensable parts of the CSIS program. All this must become more than theory, in the end results must be tangible, and measurable.

Much of this sounds like a litany of common sense, but it takes a lot of effort to obtain consensus from invested parties, to gain common understanding of roles and processes, and establish expectations for project involvement and responsibility. Artifacts of this work are things such as participation in conferences, authoring of ‘white papers’ and policy statements, creating procedures and checklists for local practitioners, and more.

What we provide to the community is an approach and system for garnering data and delivering information so that students and their parents can be better served. Doing this in ways that reduce overall local burden and public costs are key to delivering value.

How was the group founded and how many clients does it have?

Let me first address the ‘clients’ question. Imagine you are the CEO of a large enterprise with a legislated mandate to support up to six million clients, you employ more than 500,000 employees in eight thousand branch offices, and have an annual budget exceeding $40 billion. What strategic management information would you expect to have available? Would a one-year delay between deliveries of service and reporting of service provided be acceptable? When a client moved to a different branch office, would a six-week delay in records transfer be acceptable? The situation is not altogether imaginary; it is the size of California’s K-12 education system and descriptive of information available to support it in 1997.

The ‘founding’ of the CSIS program was in legislation calling for a statewide solution to those and other problems that existed with the management and exchange of student information in California public schools. Among these were limitations in local student information system capability and
capacity; untimely transfer of student records between districts; and cumbersome submission of high school transcripts to colleges. CSIS supports more than a thousand districts engaged in one or more of student identifier maintenance, electronic state reporting and records transfers. We still have a lot to do, but since being established CSIS has made measurable progress and the legislature has further defined and expanded our role.

Where is it headquartered? Are there national and international offices?

Most of the program is in Sacramento. The technology pieces and remote client services could obviously be based anywhere, but California is a big state and a few of our support people that work on-the-road are housed closer to the clients they serve most often.

The reason to be in Sacramento is that as California’s capital city, the Governor’s staff, the Secretary of Education, the State Board, the Legislature, control agencies and many private education policy-makers are all here. CSIS has occasional need for interaction with all these entities and has regular on-going work with the Department of Education.

How many people does CSIS employ?

Forty-two individuals across several disciplines. Though we are a technology-based program we depend upon more than technologists to achieve program objectives. Roughly a quarter of CSIS staff is devoted to program office functions and implementing project management efficiencies within local education agencies. That is the ‘readiness and sustainability’ work I spoke to earlier.

The rest in one or more areas working on software development life cycle tasks and client support. The departmental structure is Program Office, Local Projects, Requirements Management, Information Systems and Client Services.

Does CSIS have trading partners? If so, how many and what methods does it use to communicate with its partners?

CSIS supports the trading relationships of its clients. There is one exception that I will get to but in general, as an “information exchange utility”, CSIS is not the consumer of information, but we are a means of exchanging data within the K-12 segment as well as on to postsecondary clients. CSIS supports several reasons to transmit records from one agency to another, including local reporting to the state, NCLB data collection, transfers involving transcript information, and pre-identifying students to be tested.

Individual data is submitted ‘through’, rather than ‘to’ CSIS in a standard format based upon a data standard derived from the National Center for Education Statistics, and adopted by the California State Board of Education. All data ‘trading’ is via secure, encrypted transmission over the Internet. Data received by the consumer is in the format of their choosing, in codes of their choosing. CSIS provides the translation from incoming data to outbound.

Some key concepts in this trading scheme are that:

1. Source data is collected in simple formats as delimited flat files;
2. Any necessary code value conversion, editing, aggregating and restructuring of data is done by the CSIS-supplied SRRTS software;
3. Delivered data is in the form consumable by the recipient;
4. Data is always secured and privacy-protected.

The exception I mentioned earlier is data that is submitted to CSIS to determine whether a student is
already known to SRRTS. Several demographic elements are submitted by school districts and processed by a SRRTS algorithm that searches against the statewide enrollment database. The results of the search are returned to the submitting district as a ranked list of potential matches to existing Statewide Student Identifier, or ‘SSID’ values and previously unused values. Using SRRTS, the submitting district chooses the Identifier value to be assigned. The local enrollment and SSIS is captured at CSIS to support future data exchange needs. Having this unique SSID is critical for identifying students over time for NCLB and other needs. In a state with six million students, this has required significant effort and regimen on the part of all parties.

While CSIS’ mandate is to bring standard data formats for information exchange to California’s K-12 schools system, how do the standards fit into the national picture?

We try to stay abreast of major changes at the national level, and certainly those Federal mandates to states for what they must report are ones that do get captured within our data dictionary. But there is no current ongoing effort to stay in lockstep with a given national standard for K-12.

Our expectation is that the PESC high school transcript standard will continue to gain traction among the three public California postsecondary segments so that they and we land on a national standard.

Is the system capable of seamlessly exchanging data outside of the California school system?

Our current model demands that the receivers, wherever they are, have the same level of authentication and security as do California clients. So we need them to have a recognized digital certificate and support receipt of encrypted data (once again PKI, SSL, HTTPS). The need to interact with other authorized digital communities of users is the precise reason that we became interested in the EAP initiative. Our goal is to support records transfer for any of our public education graduates wherever they pursue higher education.

Are all public institutions within the state required to use the CSIS system? Are private institutions?

All of public K-12 is required to use CSIS for maintaining the integrity of the Statewide Student Identifier. Participation in state reporting or records transfer is voluntary, and some 270 districts with a total enrollment exceeding 3 million students are engaged in at least one of those activities.

CSIS’s Charter does not allow us to support private elementary or secondary schools, we’d need the Legislature to express their intent for us to do so. However, CSIS would be happy to send PESC standard high school transcripts to private colleges.

In your opinion, what are the biggest technological concerns we face in higher education at the state level? At the national level?

Trust is our biggest concern, so whatever technologies can help build trust are my priority. As a community of service providers, we must be mindful of public views regarding the security of computer systems and the integrity of their use.

Compromised confidentiality of data and breeches of systems security have always been concerns and the technology just gets better for both sides – those trying to enact breeches and the rest of use working to prevent intrusion and misuse.

Another opportunity is to use technology that helps ensure the accuracy of information – testing software comes to mind. Publishing inaccurate information is a fast track to mistrust.

How does CSIS deal with privacy and security?

This is another area where we work on the people
and the technical side of things. We have just spoken to the technical side and mentioned earlier that the data being transported by CSIS is always secured and privacy-protected. Some technologies used by CSIS include PKI, SSL, and HTTPS. CSIS has established itself as a Certificate Authority, so we issue client and server certificates to the people and systems that use or interface with SRRTS.

Bridging to the people side, the SSID itself is non-personally identifiable – it is a ten digit random number, stored alongside the name and local identifier. The names of students are available only to the local users that are the custodians of student data. In the instance a secondary school sending transcripts on to postsecondary, both parties have student names. But names are not part of data sent through CSIS for state reporting. Making sure that the community at large understands the limits to which names are shared is important to everyone concerned; as is knowing local responsibilities for managing data. To these ends, CSIS publishes its Privacy and Confidentiality Policy as a resource to local agencies.

Do you feel interoperability achievable?

Yes, certainly at some practical level. Right now, CSIS interacts with our K-12 and postsecondary partners on a file level interface; and servers mutually authenticate each other as part of those processes. Many months back we did some proof of concept work using the School Interoperability Framework (SIF) and we are eager for SIF to come of age as a production web service. I also believe there is real promise in the Electronic Authentication Partnership (EAP) which we learned about through PESC.

How does CSIS support standards?

Well, I am sure you heard the adage that ‘the nice thing about standards is there are so many to choose from’. CSIS is built upon standards, but some of them are of our own making. I know that sounds proprietary, but once again it was a pragmatic decision. Data standards drive the program and our first CSIS Data Dictionary was approved by the State Board in 1999. We were unable to find an existing standard that encompassed all our needs, but we extended the work of the NCES as that was the best root source we could find.

When we spec’ed SRRTS, we settled on XML as the file format with an eye to its inherent advantages in doing work over the Internet. Once again, there was no suitable standard for Tag Names, so we adapted from our Data Dictionary, planning to cross-walk to future standards. We also settled on X.509 and PKI as the basis for security components. Standards do work.

How does CSIS support PESC?

We believe that PESC’s work towards an XML-based high school transcript is our best chance to achieve a working standard in California. We are playing an active role in the S2P transcript definition. And we are promoting use of that emerging standard to postsecondary campuses that are not already too heavily invested in an older, more cumbersome standard.

To what should we all be paying more attention?

In a philosophical sense, each other, that is always a good thing. Practically, this means keeping an eye on the end game, which is to improve services to students and for K-12 to their parents. The CSIS part in this is 1) to better support the local agencies with actionable data so they can provide the direct support, and 2) provide meaningful information to educational policymakers at all levels. The point of all this is better education.

What can the community look forward to from CSIS?

Our mission is to address those previously mentioned problems of information exchange with sustainable solutions. The result will be improved capability for delivering educational services to children.
The U.S. Department of Education’s Institute for Education Sciences has a $24.8 million appropriation for a grant program to assist States in developing statewide, longitudinal data systems. The purpose of the grant program is to enable State Education Agencies (SEAs) to design, develop, and implement statewide, longitudinal data systems to manage, analyze, disaggregate, and use individual student data. Such systems are intended to allow States to generate and use the data needed to comply with reporting, facilitate research to improve student learning and close achievement gaps, promote linkages across States, and protect student privacy. While applications from States with the most limited ability to collect, analyze, and report individual student achievement data will have a priority, consideration will not be limited to such States. The grant program will be administered by the National Center for Education Statistics (NCES), within the Institute for Education Sciences (IES). NCES intends to issue a request for applications (RFA) later this year. For more information, please visit http://www.ed.gov/about/offices/list/ies/programs.html

Some publishing groups say that Google’s intention to scan millions of library volumes and make them searchable could be a violation of copyright law. The search engine will not give users the full texts of copyrighted volumes, but will provide up to three short excerpts. Google officials say that such limited use will not violate copyright law, according to a Chronicle of Higher Education article. Conversely, some publishing-industry officials that the act of scanning the book could violate copyright because it would represent a reproduction of the work.

In “Web Services 2005: Five Keys Unlock the Gate,” Joe
Keller, Vice President, Marketing for Java Web Services and Tools, Sun Microsystems, Inc. argues that “Confusion arises over the proliferation of web services specifications that are excessively complex, incomplete and overlapping. Many web services specifications are being developed outside of recognized standards bodies and don’t provide a level playing field for industry participants. This results in arbitrary power plays for standards leadership and standards fragmentation.” He outlines five requirements for Internet standards success. Web services standards must be: (1) openly debated and scrutinized by truly transparent, inclusive and democratic institutions dedicated to developing open standards; (2) royalty free; (3) demonstrated through reference implementations and detailed test suites to be compatible in practice; (4) converged to avoid technology complexity and customer inaction; (5) free-standing — standards should not reference other specs that are proprietary or outside of the same standards effort. For more information visit, http://www.idevnews.com/CaseStudies.asp?ID=14

The submission of the SAML 2.0 specification for consideration as an OASIS standard could bring fundamental changes to the way we federate identity during the next few years, according to an eWEEK article. Security Assertion Markup Language 2.0 unites the defined protocols for single sign-on, delegated administration and policy management of SAML 1.0 with the Liberty Alliance Project’s identity federation framework (otherwise known as SAML 1.1). The Liberty Alliance gained ground earlier this year when eBay Inc. announced it would stop supporting Microsoft’s Passport service. We are seeing an increasing number of companies, such as eBay, choosing federated identity standards over the possibility of handing control of identification information to third-party companies such as Microsoft. In related news, During the RSA Security conference, 13 vendors joined the U.S. General Service Administration (GSA) to demonstrate their support for the GSA’s e-Gov program of conducting secure transactions, using the SAML 2.0 specification. The GSA is aiming for full implementation by this summer. Major technology vendors such as Oracle, Computer Associates, and RSA Security are already shipping new identity management products and appliances built on the SAML 2.0 spec or have products in the works that will support the SAML spec.

The ConsortiumInfo.org Standards MetaLibrary was recently released, according to an association press release. “A ‘metalibrary’ is a means to an end, and not the end in itself. In this case, the MetaLibrary is a research tool comprising an ever-increasing number of carefully indexed, sortable and searchable abstracts (705, as of the launch date) of articles about standards. Each abstract is linked to the full text of the article at its host site. The Standards MetaLibrary is not limited to material about standards in a narrow sense. Rather, it focuses on the importance of standards to the modern world and their impact on society, and how they are created, and by whom. The materials included therefore address topics such as how the standard setting process operates, how governments support this process and utilize standards, the economic benefits of standards uptake, legal aspects of the use (and abuse) of standards, and many other subjects that illustrate the role of standards in the world today.” For more information, visit the Standards MetaLibrary: http://www.consortiuminfo.org/metalibrary/

In an attempt to get the ball rolling for adoption of OTP (one-time password) technologies, RSA Security recently announced plans to release six open specifications for public review and consultation. The absence of industry standards has limited the use of OTP technology in corporate settings. Typically, OTP technology is used to generate a series of passwords to log on to a specific system. Passwords generated can only be used once because the log-in mechanism will always expect a new one-time password at the next logon. The release of the specifications build on RSA Security’s pioneering work in setting industry-wide standards like the PKCS (Public Key Cryptography Standards), SAML (Security Assertion Markup Language) and Web Services Security: SOAP Message Security. For additional information visit http://www.eweek.com/article2/0,1759,1765912,00.asp
PESC Winter 2005 Workgroup Summit
Summaries and Notes

Steering Committee Goals for 2005
The Steering Committee created a master wish list and is working to finalize and prioritize the items.

Development

♦ Long term “visioning”
 o Web services
 o Standard Student Identifier (BK)
 o E-Signature (BK)
 o Data Transport Standards
 ▪ Document enveloping and bundling standards (SOAP/MIME) with earlier deliverables than the DTS effort (BM)
 o Authentication
 ▪ Website “collection”
 ▪ Calendar

♦ Emerging Technologies
 o Wireless
 o Encryption technology
 o News section

♦ Have some group working at least 2-5 years out

♦ Continuously solicit groups to merge into one standard
 o SIF
 o Department of Education
 o MISMO
 o IMS

♦ Software Vendors
 o Requirements for future development
 o Sequence for future development

♦ Standards
 o Prioritize the below activities (EH)
 o State Grant
 o Need Analysis & Packaging
 o Loan Conversion
 o Transcript Request Schema (BM)
 o Transcript Response Schema (BM)
 o Transcript Acknowledgement Schema (BM)
 o High School Transcript Schema (BM)
 o Degree Audit Schema (BM)
 o Admissions Application Schema (BM)

Policies and Procedures

♦ Complete templates for P & P manual
♦ GAP analysis of P & P manual
♦ Develop checklists & guidelines for SAB & CCB
Develop standards documentation
- Web Process to submit issues (database)
- Document/outline complete change management process
- Document process for detailing contents of Sector Libraries
- Document emergency process

Communications and Outreach
- Website “collection of topics”
- Master Calendar – meeting schedule
- Publish a product calendar – list of deliverables with schedules (EH)
- News section
- Love those technology blips in the newsletter – make them more future oriented, even more high tech
- Volunteer forms w/membership form – see NCHELP example
- Name of organization representative on website
- Increase communication between committees/steering/board
 - Monthly committee accomplishments
- Publish structure
- Publish difference between board/steering committee
- Benefits of standards – publish one sheeter
- Additional and frequent outreach activities (BK)
- Increase membership (EH)
- Increase recruitment of new work group participants (EH)
- Develop program committees for conferences (EH)
- Develop communication plan (EH)
- Develop publications plan (EH)
- Develop industry participation plan for member at association conferences (EH)
- Develop templates for PESC presentations (EH)

Documentation and Supporting Materials
- Document better diagrams of schemas for business users (BM)
- College Transcript XML Implementation Guide (BM)
- College Transcript Exchange Implementation Guide (BM)
- Implementation guides for all new schemas as they roll out (BM)
- EDI/XML Crosswalk table (BM)
- Official XML Stylesheets for document (transcript, etc) for printed output (BM)
- User listservs and discussion boards (BM)

Data Transport

A PowerPoint presentation is available on the PESC website. The workgroup continues to abide by the business rules established:

1. Support batch, real-time, and near real-time requests.
2. Single transport method for all business application (payload insensitive).
3. Process should not require you to open payload to determine type and
4. destination.
5. Can accommodate a variation of technical platforms (among schools, servicers, lenders, FAMS, guarantors and FSA).
6. Data must arrive in a defined sequence.
7. Highly secure encryption required. Must adhere to privacy acts. (cannot pass text in the clear, password protected, etc.) * 128 byte encryption.
8. Cost not a barrier to adoption or use.
10. Guaranteed delivery.
11. No distribution royalties (no cost to the user that wants to utilize an implementation of the Transport Standard).
12. Support low-tech institutions (can be placed on the desktop).
13. Easy to use.
15. All institutions must be able to implement the technical solution.
16. Must use open standards.

Degree Audit Request/Response

A website has been set up that contains all relative information related to this development effort: http://miami.transfer.org/pesc.

Business Case

- The schemas will provide a method for interoperability between transfer evaluation/degree audit systems and sources of student data.
- The schemas will facilitate requests and replies for transfer evaluation and/or degree audit.
- Requests may include current and prospective students for official evaluations and what if scenarios, respectively.

Examples

- ERP package with independent degree audit (Oracle Student System to DARS)
- ERP package with internal degree audit (SungardSCT Banner to Sungard Bi-Tech DegreeWorks)
- External system with ERP or independent degree audit (Nat'l Student Clearinghouse to Jenzabar CX degree audit)

Activities

- Began with schemas, data dictionaries and sample documents developed by Miami University, Oracle and DagSoft
- Held five conferences calls to define business case, scope and discuss requirements
- Completed initial requirement gathering phase
- Attempted to create initial schema using PESC components and libraries
- Reached a crossroads attempting to use complex types in Core and AcRec
Raised questions of process for additions, deletions, usage changes
 • Raised questions of communicating what is in the "pipeline"
 • Workgroup meeting 2/18 concluded to create new library for degree audit
 • Need communication process to share information about proposed changes, actions
 • Next step is to clone AcRec and define specific needs for Degree Audit request/reply
 • Attempt to re-use what exists, change ONLY when necessary, not when it would be nice
 • Goal to have submission for May conference

Change Control Board (CCB)

- The CCB continues to meet weekly on Mondays from 3:30 pm – 4:30 pm EST.
- The CCB has added Steve Margenau, Chair of Technology Advisory Board, to the CCB as voting member.
- The CCB has been focusing on CR:C changes.
- Two updates to the core have been made, one in October of 2004 and one in January 2005.
- The CCB collaborated with ESC to recommend schema version 1.0.2 as minimum standard for development and testing.
<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:30 – 4:30 Change Control</td>
<td>11:00 – 1:00 Data Transport</td>
<td>3:00 – 4:00 High School</td>
<td>2:00 – 3:30 Data Transport</td>
<td>2:00 – 3:00 Degree Audit</td>
</tr>
<tr>
<td>(weekly)</td>
<td>(weekly)</td>
<td>Transcript (weekly)</td>
<td>(weekly)</td>
<td>(weekly/as needed)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2:00 – 3:00 Submission</td>
<td>3:30 – 5:00 Technical Advisory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisory (1st Wednesday/month)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4:00 – 5:00 Steering</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Committee (1st Wednesday/month)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board of Directors:</td>
<td>Ad Hoc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Online Loan Counseling:</td>
<td>PESC line not used, managed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Request/Response Transcript:</td>
<td>by Mapping Your Future</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PESC line not used, managed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>by the National Student</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clearinghouse</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>